Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 941
Filtrar
1.
Anticancer Res ; 44(3): 981-991, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423659

RESUMO

BACKGROUND/AIM: Methionine metabolism contributes to supplying sulfur-containing amino acids, controlling the methyl group transfer reaction, and producing polyamines in cancer cells. Polyamines play important roles in various cellular functions. Methylthioadenosine phosphorylase (MTAP), the key enzyme of the methionine salvage pathway, is reported to be deficient in 15-62% of cases of hematological malignancies. MTAP-deficient cancer cells accumulate polyamines, resulting in enhanced cell proliferation. The aim of this study was to investigate the combined effects of the polyamine synthesis inhibitor SAM486A and the anticancer antimetabolite cytarabine in MTAP-deficient leukemic cells in vitro. MATERIALS AND METHODS: The leukemia cell line U937 and the subline, U937/MTAP(-), in which MTAP was knocked down by shRNA, were used. The experiments were performed in media supplemented with 20% methionine (low methionine), which was the minimum concentration for maintaining cellular viability. RESULTS: The knockdown efficiency test confirmed a 70% suppression of the expression of the MTAP gene in U937/MTAP(-) cells. Even in the media with low methionine, the intracellular methionine concentration was not reduced in U937/MTAP(-) cells, suggesting that the minimum supply of methionine was sufficient to maintain intracellular levels of methionine. Both U937/MTAP(+) and U937/MTAP(-) cells were comparably sensitive to anticancer drugs (cytarabine, methotrexate, clofarabine and 6-thioguanine). The combination of SAM486A and cytarabine was demonstrated to have synergistic cytotoxicity in U937/MTAP(-) cells with regard to cell growth inhibition and apoptosis induction, but not in U937/MTAP(+) cells. Mechanistically, SAM486A altered the intracellular polyamine concentrations and reduced the antiapoptotic proteins. CONCLUSION: Methionine metabolism and polyamine synthesis can be attractive therapeutic targets in leukemia.


Assuntos
Amidinas , Antineoplásicos , Indanos , Leucemia , Humanos , Citarabina/farmacologia , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Poliaminas , Metionina/farmacologia , Metionina/metabolismo , Leucemia/tratamento farmacológico
2.
J Biol Chem ; 300(1): 105492, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000655

RESUMO

Homozygous 5'-methylthioadenosine phosphorylase (MTAP) deletions occur in approximately 15% of human cancers. Co-deletion of MTAP and methionine adenosyltransferase 2 alpha (MAT2a) induces a synthetic lethal phenotype involving protein arginine methyltransferase 5 (PRMT5) inhibition. MAT2a inhibitors are now in clinical trials for genotypic MTAP-/- cancers, however the MTAP-/- genotype represents fewer than 2% of human colorectal cancers (CRCs), limiting the utility of MAT2a inhibitors in these and other MTAP+/+ cancers. Methylthio-DADMe-immucillin-A (MTDIA) is a picomolar transition state analog inhibitor of MTAP that renders cells enzymatically MTAP-deficient to induce the MTAP-/- phenotype. Here, we demonstrate that MTDIA and MAT2a inhibitor AG-270 combination therapy mimics synthetic lethality in MTAP+/+ CRC cell lines with similar effects in mouse xenografts and without adverse histology on normal tissues. Combination treatment is synergistic with a 104-fold increase in drug potency for inhibition of CRC cell growth in culture. Combined MTDIA and AG-270 decreases S-adenosyl-L-methionine and increases 5'-methylthioadenosine in cells. The increased intracellular methylthioadenosine:S-adenosyl-L-methionine ratio inhibits PRMT5 activity, leading to cellular arrest and apoptotic cell death by causing MDM4 alternative splicing and p53 activation. Combination MTDIA and AG-270 treatment differs from direct inhibition of PRMT5 by GSK3326595 by avoiding toxicity caused by cell death in the normal gut epithelium induced by the PRMT5 inhibitor. The combination of MTAP and MAT2a inhibitors expands this synthetic lethal approach to include MTAP+/+ cancers, especially the remaining 98% of CRCs without the MTAP-/- genotype.


Assuntos
Desoxiadenosinas , Metionina Adenosiltransferase , Neoplasias , Proteína-Arginina N-Metiltransferases , Purina-Núcleosídeo Fosforilase , S-Adenosilmetionina , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxiadenosinas/antagonistas & inibidores , Desoxiadenosinas/genética , Desoxiadenosinas/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Neoplasias/genética , Neoplasias/fisiopatologia , Neoplasias/terapia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , S-Adenosilmetionina/metabolismo
3.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833910

RESUMO

Both inosine and guanosine are precursors of uric acid that may cause the diseases of hyperuricemia and gout in humans. Here, a promising bacterial strain for efficiently biodegrading both inosine and guanosine was successfully isolated from a healthy human intestine and identified as Bacillus paranthracis YD01 with 16S rRNA analysis. An initial amount of 49.6 mg·L-1 of inosine or 49.9 mg·L-1 of guanosine was completely removed by YD01 within 12 h, which showed that YD01 had a strong ability to biodegrade inosine and guanosine. Furthermore, the initial amount of 49.2 mg·L-1 of inosine or 49.5 mg·L-1 of guanosine was totally catalyzed by the intracellular crude enzymes of YD01 within 6 h, and the initial inosine amount of 49.6 mg·L-1 or guanosine of 49.7 mg·L-1 was biodegraded by the extracellular crude enzymes of YD01 within 9 h. Illumina Hiseq sequencing and database gene annotation were used to elucidate the genomic characteristics of B. paranthracis YD01. Purine nucleoside phosphorylase, encoded by gene 1785, gene 3933, and gene 4403, was found in the KEEG database, which played a crucial role in the biodegradation of inosine and guanosine. The results of this study provide valuable insights into the mechanisms for biodegrading inosine and guanosine using B. paranthracis YD01.


Assuntos
Guanosina , Inosina , Humanos , Guanosina/metabolismo , RNA Ribossômico 16S/genética , Inosina/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo
4.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446803

RESUMO

To explore the anti-hyperuricemia components in sunflower (Helianthus annuus L.) calathide extract (SCE), we identified abietic acid (AA) via liquid chromatography-mass spectrometry and found an excellent inhibitor of xanthine oxidase (IC50 = 10.60 µM, Ki = 193.65 nM) without cytotoxicity. Based on the transcriptomics analysis of the human embryonic kidney 293T cell model established using 1 mM uric acid, we evaluated that AA showed opposite modulation of purine metabolism to the UA group and markedly suppressed the intensity of purine nucleoside phosphorylase, ribose phosphate pyrophosphokinase 2, and ribose 5-phosphate isomerase A. Molecular docking also reveals the inhibition of purine nucleoside phosphorylase and ribose phosphate pyrophosphokinase 1. The SCE exhibits similar regulation of these genes, so we conclude that AA was a promising component in SCE against hyperuricemia. This present study provided a novel cell model for screening anti-hyperuricemia natural drugs in vitro and illustrated that AA, a natural diterpenoid, is a potential inhibitor of purine biosynthesis or metabolism.


Assuntos
Helianthus , Hiperuricemia , Humanos , Helianthus/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Simulação de Acoplamento Molecular , Ribose-Fosfato Pirofosfoquinase/metabolismo , Células HEK293 , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Rim/metabolismo , Purinas/metabolismo , Xantina Oxidase
5.
Bioorg Med Chem ; 91: 117411, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451053

RESUMO

In alternate organic synthesis, biocatalysis using enzymes provides a more stereoselective and cost-effective approach. Synthesis of unnatural nucleosides by nucleoside base exchange reactions using nucleoside-metabolizing enzymes has previously shown that the 5-position recognition of pyrimidine bases on nucleoside substrates is loose and can be used to introduce functional molecules into pyrimidine nucleosides. Here we explored the incorporation of purine pseudo bases into nucleosides by the base exchange reaction of pyrimidine nucleoside phosphorylase (PyNP), demonstrating that an imidazole five-membered ring is an essential structure for the reaction. In the case of benzimidazole, the base exchange proceeded to give the deoxyribose form in 96 % yield, and the ribose form in 23 % yield. The reaction also proceeded with 1H-imidazo[4,5-b]phenazine, a benzimidazole analogue with an additional ring, although the yield of nucleoside was only 31 %. Docking simulations between 1H and imidazo[4,5-b]phenazine nucleoside and the active site of PyNP (PDB 1BRW) supported our observation that 1H-imidazo[4,5-b]phenazine can be used as a substrate by PyNP. Thus, the enzymatic substitution reaction using PyNP can be used to incorporate many purine pseudo bases and benzimidazole derivatives with various functional groups into nucleoside structures, which have potential utility as diagnostic or therapeutic agents.


Assuntos
Nucleosídeos , Purinas , Nucleosídeos/química , Benzimidazóis , Nucleosídeos de Purina , Purina-Núcleosídeo Fosforilase/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-37301365

RESUMO

Methylthio-DADMe-immucillin-A (MTDIA) is an 86 picomolar inhibitor of 5'-methylthioadenosine phosphorylase (MTAP) with potent and specific anti-cancer efficacy. MTAP salvages S-adenosylmethionine (SAM) from 5'-methylthioadenosine (MTA), a toxic metabolite produced during polyamine biosynthesis. Changes in MTAP expression are implicated in cancer growth and development, making MTAP an appealing target for anti-cancer therapeutics. Since SAM is involved in lipid metabolism, we hypothesised that MTDIA alters the lipidomes of MTDIA-treated cells. To identify these effects, we analysed the lipid profiles of MTDIA-treated Saccharomyces cerevisiae using ultra-high resolution accurate mass spectrometry (UHRAMS). MTAP inhibition by MTDIA, and knockout of the Meu1 gene that encodes for MTAP in yeast, caused global lipidomic changes and differential abundance of lipids involved in cell signaling. The phosphoinositide kinase/phosphatase signaling network was specifically impaired upon MTDIA treatment, and was independently validated and further characterised via altered localization of proteins integral to this network. Functional consequences of dysregulated lipid metabolism included a decrease in reactive oxygen species (ROS) levels induced by MTDIA that was contemporaneous with changes in immunological response factors (nitric oxide, tumour necrosis factor-alpha and interleukin-10) in mammalian cells. These results indicate that lipid homeostasis alterations and concomitant downstream effects may be associated with MTDIA mechanistic efficacy.


Assuntos
Fosfatidilinositóis , Purina-Núcleosídeo Fosforilase , Animais , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , S-Adenosilmetionina/metabolismo , Oxirredução , Mamíferos/metabolismo
7.
J Med Chem ; 66(10): 6652-6681, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37134237

RESUMO

Purine nucleoside phosphorylase (PNP) is a well-known molecular target with potential therapeutic applications in the treatment of T-cell malignancies and/or bacterial/parasitic infections. Here, we report the design, development of synthetic methodology, and biological evaluation of a series of 30 novel PNP inhibitors based on acyclic nucleoside phosphonates bearing a 9-deazahypoxanthine nucleobase. The strongest inhibitors exhibited IC50 values as low as 19 nM (human PNP) and 4 nM (Mycobacterium tuberculosis (Mt) PNP) and highly selective cytotoxicity toward various T-lymphoblastic cell lines with CC50 values as low as 9 nM. No cytotoxic effect was observed on other cancer cell lines (HeLa S3, HL60, HepG2) or primary PBMCs for up to 10 µM. We report the first example of the PNP inhibitor exhibiting over 60-fold selectivity for the pathogenic enzyme (MtPNP) over hPNP. The results are supported by a crystallographic study of eight enzyme-inhibitor complexes and by ADMET profiling in vitro and in vivo.


Assuntos
Inibidores Enzimáticos , Purina-Núcleosídeo Fosforilase , Humanos , Purina-Núcleosídeo Fosforilase/metabolismo , Inibidores Enzimáticos/química , Cristalografia
8.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047056

RESUMO

Nucleoside analogues are important compounds for the treatment of viral infections or cancers. While (chemo-)enzymatic synthesis is a valuable alternative to traditional chemical methods, the feasibility of such processes is lowered by the high production cost of the biocatalyst. As continuous enzyme membrane reactors (EMR) allow the use of biocatalysts until their full inactivation, they offer a valuable alternative to batch enzymatic reactions with freely dissolved enzymes. In EMRs, the enzymes are retained in the reactor by a suitable membrane. Immobilization on carrier materials, and the associated losses in enzyme activity, can thus be avoided. Therefore, we validated the applicability of EMRs for the synthesis of natural and dihalogenated nucleosides, using one-pot transglycosylation reactions. Over a period of 55 days, 2'-deoxyadenosine was produced continuously, with a product yield >90%. The dihalogenated nucleoside analogues 2,6-dichloropurine-2'-deoxyribonucleoside and 6-chloro-2-fluoro-2'-deoxyribonucleoside were also produced, with high conversion, but for shorter operation times, of 14 and 5.5 days, respectively. The EMR performed with specific productivities comparable to batch reactions. However, in the EMR, 220, 40, and 9 times more product per enzymatic unit was produced, for 2'-deoxyadenosine, 2,6-dichloropurine-2'-deoxyribonucleoside, and 6-chloro-2-fluoro-2'-deoxyribonucleoside, respectively. The application of the EMR using freely dissolved enzymes, facilitates a continuous process with integrated biocatalyst separation, which reduces the overall cost of the biocatalyst and enhances the downstream processing of nucleoside production.


Assuntos
Nucleosídeos , Pentosiltransferases , Nucleosídeos/química , Pentosiltransferases/metabolismo , Enzimas Imobilizadas/química , Biocatálise , Desoxirribonucleosídeos , Purina-Núcleosídeo Fosforilase/metabolismo
9.
Oncotarget ; 14: 178-187, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36913304

RESUMO

INTRODUCTION: Homozygous deletion of MTAP upregulates de novo synthesis of purine (DNSP) and increases the proliferation of neoplastic cells. This increases the sensitivity of breast cancer cells to DNSP inhibitors such as methotrexate, L-alanosine and pemetrexed. MATERIALS AND METHODS: 7,301 cases of MBC underwent hybrid-capture based comprehensive genomic profiling (CGP). Tumor mutational burden (TMB) was determined on up to 1.1 Mb of sequenced DNA and microsatellite instability (MSI) was determined on 114 loci. Tumor cell PD-L1 expression was determined by IHC (Dako 22C3). RESULTS: 208 (2.84%) of MBC featured MTAP loss. MTAP loss patients were younger (p = 0.002) and were more frequently ER- (30% vs. 50%; p < 0.0001), triple negative (TNBC) (47% vs. 27%; p < 0.0001) and less frequently HER2+ (2% vs. 8%; p = 0.0001) than MTAP intact MBC. Lobular histology and CDH1 mutations were more frequent in MTAP intact (14%) than MTAP loss MBC (p < 0.0001). CDKN2A (100%) and CDKN2B (97%) loss (9p21 co-deletion) were significantly associated with MTAP loss (p < 0.0001). Likely associated with the increased TNBC cases, BRCA1 mutation was also more frequent in MTAP loss MBC (10% vs. 4%; p < 0.0001). As for immune checkpoint inhibitors biomarkers, higher TMB >20 mut/Mb levels in the MTAP intact MBC (p < 0.0001) and higher PD-L1 low expression (1-49% TPS) in the MTAP loss MTAP (p = 0.002) were observed. CONCLUSIONS: MTAP loss in MBC has distinct clinical features with genomic alterations (GA) affecting both targeted and immunotherapies. Further efforts are necessary to identify alternative means of targeting PRMT5 and MTA2 in MTAP-ve cancers to benefit from the high-MTA environment of MTAP-deficient cancers.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Humanos , Antígeno B7-H1/genética , Homozigoto , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Deleção de Sequência , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Genômica , Histona Desacetilases/genética , Proteínas Repressoras/genética , Proteína-Arginina N-Metiltransferases/genética
10.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768477

RESUMO

Mammalian purine nucleoside phosphorylase (PNP) is biologically active as a homotrimer, in which each monomer catalyzes a reaction independently of the others. To answer the question of why the native PNP forms a trimeric structure, we constructed, in silico and in vitro, the monomeric form of the enzyme. Molecular dynamics simulations showed different geometries of the active site in the non-mutated trimeric and monomeric PNP forms, which suggested that the active site in the isolated monomer could be non-functional. To confirm this hypothesis, six amino acids located at the interface of the subunits were selected and mutated to alanines to disrupt the trimer and obtain a monomer (6Ala PNP). The effects of these mutations on the enzyme structure, stability, conformational dynamics, and activity were examined. The solution experiments confirmed that the 6Ala PNP mutant occurs mainly as a monomer, with a secondary structure almost identical to the wild type, WT PNP, and importantly, it shows no enzymatic activity. Simulations confirmed that, although the secondary structure of the 6Ala monomer is similar to the WT PNP, the positions of the amino acids building the 6Ala PNP active site significantly differ. These data suggest that a trimeric structure is necessary to stabilize the geometry of the active site of this enzyme.


Assuntos
Simulação de Dinâmica Molecular , Purina-Núcleosídeo Fosforilase , Animais , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/metabolismo , Mamíferos/metabolismo , Domínio Catalítico , Estrutura Secundária de Proteína
11.
Plant Biotechnol J ; 21(4): 726-741, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36593511

RESUMO

Under field conditions, plants are often simultaneously exposed to several abiotic and biotic stresses resulting in significant reductions in growth and yield; thus, developing a multi-stress tolerant variety is imperative. Previously, we reported the neofunctionalization of a novel PNP family protein, Putranjiva roxburghii purine nucleoside phosphorylase (PRpnp) to trypsin inhibitor to cater to the needs of plant defence. However, to date, no study has revealed the potential role and mechanism of either member of this protein group in plant defence. Here, we overexpressed PRpnp in Citrus aurantifolia which showed nuclear-cytoplasmic localization, where it functions in maintaining the intracellular purine reservoir. Overexpression of PRpnp significantly enhanced tolerance to salt, oxidative stress, alkaline pH, drought and two pests, Papilio demoleus and Scirtothrips citri in transgenic plants. Global gene expression studies revealed that PRpnp overexpression up-regulated differentially expressed genes (DEGs) related to ABA- and JA-biosynthesis and signalling, plant defence, growth and development. LC-MS/MS analysis validated higher endogenous ABA and JA accumulation in transgenic plants. Taken together, our results suggest that PRpnp functions by enhancing the endogenous ABA and JA, which interact synergistically and it also inhibits trypsin proteases in the insect gut. Also, like other purine salvage genes, PRpnp also regulates CK metabolism and increases the levels of CK-free bases in transgenic Mexican lime. We also suggest that PRpnp can be used as a potential candidate to develop new varieties with improved plant vigour and enhanced multiple stress resistance.


Assuntos
Ácido Abscísico , Citrus , Ácido Abscísico/metabolismo , Cromatografia Líquida , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Espectrometria de Massas em Tandem , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Citrus/genética , Secas
12.
Eur J Med Chem ; 248: 115087, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610250

RESUMO

The present work describes a quinazolinone-based lead optimization for the development of novel purine nucleoside phosphorylase (PNP) inhibitors with quinazolinone scaffold. Nineteen compounds were proposed and docked against PNP, the best 14 compounds with highest docking and affinity scores and low RMSD values were synthesized. Synthesis of new quinazolinone derivatives with variable acetamide substituents on two positions on quinazoline ring was performed. The structures assigned to the products were concordant with the microanalytical and spectral data. In vitro cytotoxicity on human breast cancer cell line (MCF7) was performed and identified compound 6g as the most potent with IC50 (0.99 ± 0.11 µM) which was further tested against five different breast cancer cell lines in addition to normal breast cell to determine the selectivity. Compound 6g was subjected to molecular dynamic simulation study, radiolabelling and biodistribution study to investigate its stability and selectivity toward breast cancers. The in vitro PNP inhibition results were aligned with the in silico, cytotoxicity, and biodistribution results where 6g showed the most potent PNP inhibitory activity with IC50 (0.159 ± 0.007 µM) when compared to Peldesine (BCX-34) IC50 (0.041 ± 0.002 µM).


Assuntos
Neoplasias da Mama , Purina-Núcleosídeo Fosforilase , Humanos , Feminino , Purina-Núcleosídeo Fosforilase/metabolismo , Neoplasias da Mama/tratamento farmacológico , Quinazolinonas/farmacologia , Distribuição Tecidual , Inibidores Enzimáticos/farmacologia , Acetamidas , Relação Estrutura-Atividade
13.
Cancer Rep (Hoboken) ; 6(2): e1708, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36253876

RESUMO

BACKGROUND: Purine nucleoside phosphorylase (PNP) gene transfer represents a promising approach to treatment of head and neck malignancies. We tested recombinant adenovirus already in phase I/II clinical testing and leading-edge patient-derived xenografts (PDX) as a means to optimize this therapeutic strategy. METHODS: Our experiments investigated purine base cytotoxicity, PNP enzyme activity following treatment of malignant tissue, tumor mass regression, viral receptor studies, and transduction by tropism-modified adenovirus. RESULTS: Replication deficient vector efficiently transduced PDX cells and mediated significant anticancer effect following treatment with fludarabine phosphate in vivo. Either 6-methylpurine or 2-fluoroadenine (toxic molecules generated by the PNP approach) ablated head and neck cancer cell proliferation. High levels of adenovirus-3 specific receptors were detected in human tumor models, and vector was evaluated that utilizes this pathway. CONCLUSIONS: Our studies provide the scientific foundation necessary to improve PNP prodrug cleavage and advance a new treatment for head and neck cancer.


Assuntos
Neoplasias de Cabeça e Pescoço , Purina-Núcleosídeo Fosforilase , Humanos , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Xenoenxertos , Vetores Genéticos , Terapia Genética , Adenoviridae/genética
14.
Immunology ; 168(2): 331-345, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36183155

RESUMO

Methylthioadenosine phosphorylase (MTAP) deficiency occurs in various malignancies and is associated with poor survival in cancer patients. However, the mechanisms underlying tumour progression due to MTAP loss are yet to be elucidated. Utilizing integrated analyses of the transcriptome, proteome and secretome, we demonstrated that MTAP deficiency alters tumour-intrinsic, immune-related pathways and reprograms cytokine profiles towards a tumour-favourable environment. Additionally, MTAP-knockout cells exhibited a marked increase in the immune checkpoint protein PD-L1. Upon co-culturing primary T cells with cancer cells, MTAP loss-mediated PD-L1 upregulation inhibited T cell-mediated killing activity and induced several T cell exhaustion markers. In two xenograft tumour models, we showed a modest increase in average volume of tumours derived from MTAP-deficient cells than that of MTAP-proficient tumours. Surprisingly, a remarkable increase in tumour size was observed in humanized mice bearing MTAP-deficient tumours, as compared to their MTAP-expressing counterparts. Following immunophenotypic characterization of tumour-infiltrating leukocytes by mass cytometry analysis, MTAP-deficient tumours were found to display decreased immune infiltrates with lower proportions of both T lymphocytes and natural killer cells and higher proportions of immunosuppressive cells as compared to MTAP-expressing tumour xenografts. Taken together, our results suggest that MTAP deficiency restructures the tumour immune microenvironment, promoting tumour progression and immune evasion.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Animais , Camundongos , Antígeno B7-H1/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Neoplasias/metabolismo , Linfócitos T/metabolismo , Microambiente Tumoral
15.
J Phys Chem B ; 127(1): 144-150, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36538016

RESUMO

The influence of protein motions on enzyme catalysis remains a topic of active discussion. Protein motions occur across a variety of time scales, from vibrational fluctuations in femtoseconds, to collective motions in milliseconds. There have been numerous studies that show conformational motions may assist in catalysis, protein folding, and substrate specificity. It is also known through transition path sampling studies that rapid promoting vibrations contribute to enzyme catalysis. Human purine nucleoside phosphorylase (PNP) is one enzyme that contains both an important conformational motion and a rapid promoting vibration. The slower motion in this enzyme is associated with a loop motion, that when open allows substrate entry and product release but closes over the active site during catalysis. We examine the differences between an unconstrained PNP structure and a PNP structure with constraints on the loop motion. To investigate possible coupling between the slow and fast protein dynamics, we employed transition path sampling, reaction coordinate identification, electric field calculations, and free energy calculations reported here.


Assuntos
Proteínas , Purina-Núcleosídeo Fosforilase , Humanos , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/metabolismo , Sítios de Ligação , Conformação Proteica , Movimento (Física) , Catálise
16.
J Transl Med ; 20(1): 620, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572880

RESUMO

Glioblastoma is the most lethal form of brain tumor with a recurrence rate of almost 90% and a survival time of only 15 months post-diagnosis. It is a highly heterogeneous, aggressive, and extensively studied tumor. Multiple studies have proposed therapeutic approaches to mitigate or improve the survival for patients with glioblastoma. In this article, we review the loss of the 5'-methylthioadenosine phosphorylase (MTAP) gene as a potential therapeutic approach for treating glioblastoma. MTAP encodes a metabolic enzyme required for the metabolism of polyamines and purines leading to DNA synthesis. Multiple studies have explored the loss of this gene and have shown its relevance as a therapeutic approach to glioblastoma tumor mitigation; however, other studies show that the loss of MTAP does not have a major impact on the course of the disease. This article reviews the contrasting findings of MTAP loss with regard to mitigating the effects of glioblastoma, and also focuses on multiple aspects of MTAP loss in glioblastoma by providing insights into the known findings and some of the unexplored areas of this field where new approaches can be imagined for novel glioblastoma therapeutics.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo
17.
J Biol Chem ; 298(12): 102615, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265580

RESUMO

Nicotinamide riboside (NR) is an effective precursor of nicotinamide adenine dinucleotide (NAD) in human and animal cells. NR supplementation can increase the level of NAD in various tissues and thereby improve physiological functions that are weakened or lost in experimental models of aging or various human pathologies. However, there are also reports questioning the efficacy of NR supplementation. Indeed, the mechanisms of its utilization by cells are not fully understood. Herein, we investigated the role of purine nucleoside phosphorylase (PNP) in NR metabolism in mammalian cells. Using both PNP overexpression and genetic knockout, we show that after being imported into cells by members of the equilibrative nucleoside transporter family, NR is predominantly metabolized by PNP, resulting in nicotinamide (Nam) accumulation. Intracellular cleavage of NR to Nam is prevented by the potent PNP inhibitor Immucillin H in various types of mammalian cells. In turn, suppression of PNP activity potentiates NAD synthesis from NR. Combining pharmacological inhibition of PNP with NR supplementation in mice, we demonstrate that the cleavage of the riboside to Nam is strongly diminished, maintaining high levels of NR in blood, kidney, and liver. Moreover, we show that PNP inhibition stimulates Nam mononucleotide and NAD+ synthesis from NR in vivo, in particular, in the kidney. Thus, we establish PNP as a major regulator of NR metabolism in mammals and provide evidence that the health benefits of NR supplementation could be greatly enhanced by concomitant downregulation of PNP activity.


Assuntos
NAD , Purina-Núcleosídeo Fosforilase , Humanos , Camundongos , Animais , NAD/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Niacinamida/farmacologia , Niacinamida/metabolismo , Compostos de Piridínio , Mamíferos/metabolismo
18.
J Biol Chem ; 298(9): 102367, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963436

RESUMO

Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway that converts the polyamine synthesis byproduct 5'-deoxy-5'-methylthioadenosine (MTA) into methionine. Inactivation of MTAP, often by homozygous deletion, is found in both solid and hematologic malignancies and is one of the most frequently observed genetic alterations in human cancer. Previous work established that MTAP-deleted cells accumulate MTA and contain decreased amounts of proteins with symmetric dimethylarginine (sDMA). These findings led to the hypothesis that accumulation of intracellular MTA inhibits the protein arginine methylase (PRMT5) responsible for bulk protein sDMAylation. Here, we confirm that MTAP-deleted cells have increased MTA accumulation and reduced protein sDMAylation. However, we also show that addition of extracellular MTA can cause a dramatic reduction of the steady-state levels of sDMA-containing proteins in MTAP+ cells, even though no sustained increase in intracellular MTA is found because of catabolism of MTA by MTAP. We determined that inhibition of protein sDMAylation by MTA occurs within 48 h, is reversible, and is specific. In addition, we have identified two enhancer-binding proteins, FUBP1 and FUBP3, that are differentially sDMAylated in response to MTAP and MTA. These proteins work via the far upstream element site located upstream of Myc and other promoters. Using a transcription reporter construct containing the far upstream element site, we demonstrate that MTA addition can reduce transcription, suggesting that the reduction in FUBP1 and FUBP3 sDMAylation has functional consequences. Overall, our findings show that extracellular MTA can inhibit protein sDMAylation and that this inhibition can affect FUBP function.


Assuntos
Arginina , Desoxiadenosinas , Purina-Núcleosídeo Fosforilase , Arginina/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Humanos , Metionina/metabolismo , Metilação , Poliaminas , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Proteínas de Ligação a RNA/metabolismo , Deleção de Sequência , Tionucleosídeos
19.
EMBO Rep ; 23(8): e54265, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35766227

RESUMO

The aggressive nature and poor prognosis of lung cancer led us to explore the mechanisms driving disease progression. Utilizing our invasive cell-based model, we identified methylthioadenosine phosphorylase (MTAP) and confirmed its suppressive effects on tumorigenesis and metastasis. Patients with low MTAP expression display worse overall and progression-free survival. Mechanistically, accumulation of methylthioadenosine substrate in MTAP-deficient cells reduce the level of protein arginine methyltransferase 5 (PRMT5)-mediated symmetric dimethylarginine (sDMA) modification on proteins. We identify vimentin as a dimethyl-protein whose dimethylation levels drop in response to MTAP deficiency. The sDMA modification on vimentin reduces its protein abundance but trivially affects its filamentous structure. In MTAP-deficient cells, lower sDMA modification prevents ubiquitination-mediated vimentin degradation, thereby stabilizing vimentin and contributing to cell invasion. MTAP and PRMT5 negatively correlate with vimentin in lung cancer samples. Taken together, we propose a mechanism for metastasis involving vimentin post-translational regulation.


Assuntos
Neoplasias Pulmonares , Purina-Núcleosídeo Fosforilase , Humanos , Neoplasias Pulmonares/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Vimentina/genética
20.
J Clin Invest ; 132(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35653193

RESUMO

Purine nucleoside phosphorylase (PNP) enables the breakdown and recycling of guanine nucleosides. PNP insufficiency in humans is paradoxically associated with both immunodeficiency and autoimmunity, but the mechanistic basis for these outcomes is incompletely understood. Here, we identify two immune lineage-dependent consequences of PNP inactivation dictated by distinct gene interactions. During T cell development, PNP inactivation is synthetically lethal with downregulation of the dNTP triphosphohydrolase SAMHD1. This interaction requires deoxycytidine kinase activity and is antagonized by microenvironmental deoxycytidine. In B lymphocytes and macrophages, PNP regulates Toll-like receptor 7 signaling by controlling the levels of its (deoxy)guanosine nucleoside ligands. Overriding this regulatory mechanism promotes germinal center formation in the absence of exogenous antigen and accelerates disease in a mouse model of autoimmunity. This work reveals that one purine metabolism gene protects against immunodeficiency and autoimmunity via independent mechanisms operating in distinct immune lineages and identifies PNP as a potentially novel metabolic immune checkpoint.


Assuntos
Síndromes de Imunodeficiência , Purina-Núcleosídeo Fosforilase , Animais , Autoimunidade , Humanos , Camundongos , Nucleosídeos de Purina , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Linfócitos T , Receptor 7 Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...